## 400 MHz QUADRATURE MODULATOR FOR DIGITAL MOBILE COMMUNICATION

## DESCRIPTION

The $\mu$ PC8105GR is a sillicon monolithic integrated circuit designed as quadrature modulator for digital mobile communication systems. This modulator housed in a 16 pin plastic SSOP that is easy to install and contributes to miniaturizing the system.

The device has power save function and can operates 2.7 to 5.5 V supply voltage to realize low power consumption.

## FEATURES

- Internal $90^{\circ}$ phase shifter is accurate over an IF range from 100 MHz to 400 MHz .
- Wide supply voltage range: $\mathrm{Vcc}=2.7$ to 5.5 V .
- Low operation current: Icc = 16 mA (typ.).
- 16 pin plastic SSOP suitable for high density surface mounting.
- Low current in sleep mode


## APPLICATION

- IF modulator for Digital cellular phone (PDC, IS-54, GSM etc..)
- IF modulator for Digital cordless phone (PHS, PCS etc..)


## ORDERING INFORMATION

| PART NUMBER | PACKAGE | SUPPLYING FORM |
| :---: | :---: | :---: |
| $\mu$ PC8105GR-E1 | 16 pin plastic SSOP (225 mil) $)$ | Carrier tape width 12 mm . Q'ty $2.5 \mathrm{kp} /$ Reel <br> Pin 1 indicated pull-out direction of tape. |

To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: $\mu$ PC8105GR)

## Caution electro-static sensitive device

## SERIES PRODUCTS

| SERIES TYPE | PART <br> NUMBER | f LO1 in <br> $(\mathrm{MHz})$ | f MODout <br> $(\mathrm{MHz})$ | $\mathrm{fI} / \mathrm{Q}$ <br> $(\mathrm{MHz})$ | Up-Converter <br> $\mathrm{fRFout} \mathrm{(MHz)}$ | APPLICATIONS |
| :---: | :--- | :---: | :---: | :---: | :--- | :--- |
| 150 MHz Quadrature MOD | $\mu$ PC8101GR | 100 to <br> 300 | 50 to 150 | DC to 0.5 | External | CT2, Digital Comm. |
| Up-Con + Quadrature MOD | $\mu$ PC8104GR | 100 to 400 |  | DC to 10 | 800 to 1900 | Digital Comm. |
| 400 MHz Quadrature MOD | $\mu$ PC8105GR | 100 to 400 |  | DC to 10 | External | Digital Comm. |

Remark: As for detail information of series products, please refer to each data sheet.

## INTERNAL BLOCK DIAGRAM AND PIN CONNECTIONS (Top View)



## APPLICATION EXAMPLE

## [Digital cellular hand-held phone]



## ABSOLUTE MAXIMUM RATINGS

| PARAMETER | SYMBOL | RATING | UNIT | TEST CONDITIONS |
| :--- | :---: | :---: | :---: | :--- |
| Supply Voltage | $\mathrm{V}_{\mathrm{cc}}$ | 6.0 | V | $\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |
| Power Save Voltage | $\mathrm{V}_{\mathrm{PS}}$ | 6.0 | V | $\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |
| Power Dissipation | $\mathrm{PD}_{\mathrm{D}}$ | 310 | mW | $\mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}^{\circ}$ |
| Operating Temperature | $\mathrm{T}_{\text {op }}$ | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Storage Temperature | $\mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |  |

*1: Mounted on $50 \times 50 \times 1.6 \mathrm{~mm}$ double copper clad epoxy glass board

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 2.7 | 3.0 | 5.5 | V |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | +25 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Modulator Output Frequency | fmodout | 100 |  | 400 | MHz |  |
| LO1 Input Frequency | flotin |  |  |  |  | PLoin $=-10 \mathrm{dBm}$ |
| I/Q Input Frequency | fuain | DC |  | 10 | MHz | P//Gin $=600 \mathrm{mV}_{\text {p-p }}$ MAX (Single ended) |

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}$, Unless Otherwise Specified VPS $\geq 1.8 \mathrm{~V}$ )

| PARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit Current | Icc | 10 | 16 | 21 | mA | No input signal |
| Circuit Current at Power Save Mode | $\mathrm{Icc}(\mathrm{PS})$ |  | 0.1 | 5 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{PS}} \leq 1.0 \mathrm{~V}$ |
| Output Power | Pmodout | -21.0 | -16.5 | -12.0 | dBm | $\begin{aligned} & \text { I/Q DC }=1.5 \mathrm{~V} \\ & \text { P//ain }=500 \mathrm{mV}_{\mathrm{ppp}}(\text { Single ended }) \end{aligned}$ |
| LO Carrier Leak | LOL |  | -40 | -30 | dBc |  |
| Image Rejection (Side Band Leak) | ImR |  | -40 | -30 | dBc |  |

## STANDARD CHARACTERISTICS FOR REFERENCE

$\left(\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}\right.$, Unless Otherwise Specified VPS $\geq 1.8 \mathrm{~V}$ )

| PARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I/Q 3rd Order <br> Intermodulation Distortion | IM3/1/ |  | -50 | -30 | dBc | $\begin{aligned} & \mathrm{I} / \mathrm{Q} \mathrm{DC}=1.5 \mathrm{~V} \\ & \text { P//ain }=500 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}(\text { Single ended }) \end{aligned}$ |
| I/Q Input Impedance | ZıQ |  | 20 |  | $\mathrm{k} \Omega$ | $\begin{aligned} & \text { I/Q DC }=1.5 \mathrm{~V} \\ & \text { P//ain }=500 \mathrm{mV}_{\text {p-p }}(\text { Single ended }) \\ & (\mathrm{I} \rightarrow \mathrm{I}, \mathrm{Q} \rightarrow \overline{\mathrm{Q}}) \end{aligned}$ |
| I/Q Bias Current | liva |  | 5 |  | $\mu \mathrm{A}$ |  |
| LO1 Input VSWR | Zıo |  | 1.2:1 |  | - |  |
| Power Save Rise Time | TPS(RISE) |  | 2 | 5 | $\mu \mathrm{s}$ | $\mathrm{V}_{\mathrm{Ps}}(\mathrm{OFF}) \rightarrow \mathrm{VPs}^{\text {(ON }}$ ) |
| Power Save Fall Time | TpS(FALL) |  | 2 | 5 | $\mu \mathrm{s}$ | $\mathrm{V} \mathrm{Ps}(\mathrm{ON}) \rightarrow \mathrm{Vps}(\mathrm{OFF})$ |

## PIN EXPLANATION


*1: In case of that I/Q input signals are single ended.
Of course, I/Q signal inputs can be used either single endedly or differentially with proper terminations.

## PIN EXPLANATION

| PIN NO. | ASSIGN- <br> MENT | SUPPLY <br> VOL. (V) | PIN <br> VOL.(V) | FUNCTION AND APPLICATION |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- |$\quad$ EQUIPMENT CIRCUIT

## EXPLANATION OF INTERNAL FUNCTION

| BLOCK | FUNCTION/OPERATION |  |
| :--- | :--- | :--- | :--- |
| $90^{\circ}$ PHASE |  |  |
| SHIFTER |  |  |$\quad$| Input signal from LO is send to digital |
| :--- |
| circuit of T-type flip-flop through frequency |
| doubler. Output signal from T -type $\mathrm{F} / \mathrm{F}$ is |
| changed to same frequency as LO input |
| and that have quadrature phase shift, $0^{\circ}$, |
| $90^{\circ}, 180^{\circ}, 270^{\circ}$. These circuits have |
| function of self phase correction to make |
| correctly quadrature signals. |

## TYPICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}$ )

Unless otherwise specified $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PS}}=3 \mathrm{~V}, \mathrm{I} / \mathrm{Q}$ DC offset $=\bar{I} / \bar{Q} \mathrm{DC}$ offset $=1.5 \mathrm{~V}, \mathrm{I} / \mathrm{Q}$ Input Signal $=500 \mathrm{mV}_{\mathrm{P}-\mathrm{p}}$ (single ended), PLoin $=-10 \mathrm{dBm}$, (continuous wave)

SUPPLY VOLTAGE vs CIRCUIT CURRENT


Lo INPUT POWER vs OUTPUT POWER, LOCAL LEAK, IMAGE REJECTION, I/Q 3RD ORDER INTERMODULATION DISTORTION


I/Q INPUT SIGNAL vs OUTPUT POWER, LOCAL LEAK, IMAGE REJECTION, I/Q 3RD ORDER INTERMODULATION DISTORTION


P//ain - I/Q Input Signal - $\mathrm{V}_{\mathrm{p}-\mathrm{p}}$

Lo INPUT FREQUENCY vs OUTPUT POWER, LOCAL LEAK, IMAGE REJECTION, I/Q 3RD, ORDER INTERMODULATION DISTORTION


## Lo INPUT FREQUENCY vs VECTOR ERROR, MAGNITUDE ERROR, PHASE ERROR



TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM


TYPICAL $\pi / 4$ DQPSK MODULATION OUTPUT SPECTRUM $<P H S>384$ kbps, RNYQ $\alpha=0.5$, MOD Pattern (PN9)

*** Multi Marker List *** No.1: 239.100 MHz -68.75 dB No.2: $239.400 \mathrm{MHz}-68.25 \mathrm{~dB}$ No.3: $240.600 \mathrm{MHz}-68.25 \mathrm{~dB}$ No.4: $240.900 \mathrm{MHz}-69.00 \mathrm{~dB}$

TYPICAL $\pi / 4$ DQPSK MODULATION OUTPUT SPECTRUM <PDC>42 kbps, RNYQ $\alpha=0.5$, MOD Pattern<PN9>

*** Multi Marker List ***
No.1: $239.9000 \mathrm{MHz}-76.50 \mathrm{~dB}$ No.2: $239.9500 \mathrm{MHz}-70.50 \mathrm{~dB}$ No.3: $240.0500 \mathrm{MHz}-71.00 \mathrm{~dB}$ No.4: $240.1000 \mathrm{MHz}-75.75 \mathrm{~dB}$

## MODout OUTPUT IMPEDANCE



## LOin INPUT IMPEDANCE



## TEST CIRCUIT


$\mathrm{f}:$ DC to hundreds kHz A : 0.5 $\mathrm{V}_{\mathrm{p}-\mathrm{p}}$ (I, Q only) $\overline{\mathrm{V}}: 1.5 \mathrm{~V}(\mathrm{I}, \overline{\mathrm{I}}, \mathrm{Q}, \overline{\mathrm{Q}})$

## TEST BOARD



## PACKAGE DIMENSIONS

* 16 PIN PLASTIC SHRINK SOP (225 mil) (UNIT: mm)


NOTE Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

## NOTE ON CORRECT USE

(1) Observe precautions for handling because of electrostatic sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
(3) Keep the track length of the ground pins as short as possible.
(4) Connect a bypass capacitor (e.g. 1000 pF ) to the Vcc pin.
(5) I, Q DC offset voltage should be same as the I, Q DC offset voltage (to prevent changing the local leak level with power save control.)

## RECOMMENDED SOLDERING CONDITIONS

This product should be soldered in the following recommended conditions. Other soldering methods and conditions than the recommended conditions are to be consulted with our sales representatives.
$\mu$ PC8105GR

| Soldering process | Soldering Conditions | Symbol |
| :--- | :--- | :---: |
| Infrared ray reflow | Peak package's surface temperature: $235^{\circ} \mathrm{C}$ or below, <br> Reflow time: 30 seconds or below $\left(210^{\circ} \mathrm{C}\right.$ or higher), <br> Number of reflow process: 3, Exposure limit: None | IR35-00-3 |
| VPS | Peak package's surface temperature: $215^{\circ} \mathrm{C}$ or below, <br> Reflow time: 30 seconds or below $\left(200^{\circ} \mathrm{C}\right.$ or higher $)$, <br> Number of reflow process: 3, Exposure limit: None | VP15-00-3 |
| Wave soldering | Solder temperature: $260^{\circ} \mathrm{C}$ or below <br> Flow time: 10 seconds or below, <br> Number of reflow process: 1, Exposure limit: None | WS60-00-1 |
| Partial heating method | Terminal temperature: $300{ }^{\circ} \mathrm{C}$ or below <br> Flow time: 3 seconds/pin or below, <br> Exposure limit: None |  |

*: Exposure limit before soldering after dry-pack package is opened. Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at $65 \%$ or less.

Note: Apply only a single process at once, except for "Partial heating method".
For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.
[MEMO]

## - The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

